Главная страница
Математика
Таблица производных
C′=0,C=const C^\prime=0, C = const C′=0,C=const
(xn)′=nxn−1 (x^n)^\prime=nx^{n-1} (xn)′=nxn−1
(ax)′=ax⋅lna (a^x)^\prime=a^x\cdot\ln{a} (ax)′=ax⋅lna
(ex)′=ex (e^x)^\prime=e^x (ex)′=ex
(logax)′=1xlna (\log_a{x})^\prime=\frac{1}{x\ln{a}} (logax)′=xlna1
(lnx)′=1x (\ln{x})^\prime=\frac{1}{x} (lnx)′=x1
(sinx)′=cosx (\sin{x})^\prime=\cos{x} (sinx)′=cosx
(cosx)′=−sinx (\cos{x})^\prime=-\sin{x} (cosx)′=−sinx
(tgx)′=1cos2x (\tg{x})^\prime=\frac{1}{\cos^2{x}} (tgx)′=cos2x1
(ctgx)′=−1sin2x (\ctg{x})^\prime=-\frac{1}{\sin^2{x}} (ctgx)′=−sin2x1
(arcsinx)′=11−x2 (\arcsin{x})^\prime=\frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21
(arccosx)′=−11−x2 (\arccos{x})^\prime=-\frac{1}{\sqrt{1-x^2}} (arccosx)′=−1−x21
(arctgx)′=11+x2 (\arctg{x})^\prime=\frac{1}{1+x^2} (arctgx)′=1+x21
(arcctgx)′=−11+x2 (\arcctg{x})^\prime=-\frac{1}{1+x^2} (arcctgx)′=−1+x21